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Theory and experiment are presented for the strong acoustic harmonics produced in photoconductive 
cadmium sulfide as a result of nonlinearities in the electron-lattice interaction responsible for ultrasonic 
amplification. Data have been taken at fundamental shear-wave frequencies of 11.5 and 30 Mc on a 7-mm 
crystal and at 30 Mc on a 3-mm crystal. The second-harmonic output was measured as a function of input 
power at the crossover point (where the electron drift velocity is equal to the sound velocity) for various 
sample resistivities. The harmonic power is shown to be proportional to the square of the input power, and 
the largest harmonic obtained was 4 dB below the fundamental for an input acoustic intensity of approxi
mately 1 W/cm2. 

I. INTRODUCTION 

STRONG ultrasonic harmonic generation has been 
observed in photoconductive cadmium sulfide. The 

mechanism which produces the harmonics is the non-
linearity of higher order terms in the electron-lattice 
interaction responsible for ultrasonic amplification.1 The 
second harmonic power can be as large as 4 dB below the 
fundamental for an input acoustic intensity of approxi
mately 1 W/cm2 . The data have been taken at crossover 
(where the electron drift velocity is equal to the sound 
velocity) in order to simplify the interpretation of the 
experimental results. At crossover, the change in the 
amplitude of the fundamental during propagation down 
the crystal is due solely to losses to higher harmonics 
while at other drift voltages the fundamental and the 
harmonics are amplified or attenuated at different rates. 
However, dispersion as a function of frequency is a 
maximum here, giving rise to coherence phenomena 
similar to the optical harmonic case.2 

The possibility of achieving large harmonic generation 
and parametric interaction of acoustic waves in piezo
electric semiconductors was first realized by Hutson.3 

Harmonic generation in CdS has recently been reported 
by Ishiguro, Uchida, and Suzuki,4 Tell,5 and Kroger.6 

The physical situation is that the self-consistent field 
produced by the interaction of the electrons with the 
traveling wave contains higher harmonics which, since 
the crystal is strongly piezoelectric, give rise to large 
strains at the harmonic frequencies. 

In the original explanation offered by Hutson3 in 
regard to the saturation of acoustic flux, the space-
charge wave at one frequency would interact with the 
piezoelectric field at a second frequency giving rise to 
strains at the sum and difference frequencies. This inter
action would take place by virtue of the nonlinearities 
in the electron lattice interaction. In particular, the 

1 A. R. Hutson, J. H. McFee, and D. L. White, Phys. Rev. 
Letters?, 237 (1961). 

2 P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963). 
3 A. R. Hutson, Phys. Rev. Letters 9, 296 (1962). 
4 T . Ishiguro, I. Uchida, and T. Suzuki, 1964 IEEE Inter

national Convention (unpublished). 
5 B . Tell, Bull. Am. Phys. Soc. 9, 478 (1964). 
«H. Kroger, Appl. Phys. Letters 4, 150 (1964). 
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nonlinearities arise from the term (6/dX){E(dD/dX)} 
in Eq. (2) below. This term is omitted in the ordinary 
treatment of the ultrasonic amplification process.1,7'8 

We have, in effect, an equivalent third-order elastic 
constant which can be larger than 1014 dyne/cm2 com
pared to the usual lattice anelastic constants of 1011 

to 1012 dyne/cm2.9 

II. THEORY 

Following Hutson,3 the electric field E and the strain 
S are expanded in Fourier series 

E=E0+Yl Emo sm(kmX~mo)t+(pEm), (la) 

•S,==Z) Smo> sm(kmX—fna)t-\-(psm), (ib) 

where E0 is the applied drift field. Using Eq. (7) in 
White7 with the notation previously used7 

d2D 

dXdt -"^\[qn°-
dD 

dX 
-Dn-

dzD 

ldXz 
(2) 

where D is the displacement vector, fi the mobility, and 
Dn the diffusion constant. Substituting for D=eE-\-eS 
(e is the dielectric constant and e the piezoelectric con
stant) and solving for Emo} in terms of Sm(a at crossover, 
with the assumptions that the second harmonic is small 
compared to the fundamental, higher harmonics are 
negligible, and dispersion can be neglected in the above 
equation yields 

e CO/COD 
Eu= 5w (3) 

e (WC/CO+CO/COD) 

and 

E 2 0 } — • 
e 2CO/COD 

€ (a>c/2w+2co/wz>) 

ifW/VofXue/oXWuD) 

+ ( 2CO/VD+w c/2u) (ca/ccj)+&> c/ca)2 
SJ, (4) 

7 D. L. White, J. Appl. Phys. 33, 2547 (1962). 
8 A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962). 
9 J. M. Ziman, Electrons and Phonons (Oxford University Press, 

New York, 1960), p. 152. 
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where o)c=a/e is the conductivity frequency and 
COD= Vo2/Dn is the diffusion frequency. Substituting for 
E in the wave equation [Eq. (2) from White7] 

d2u d2u 

° dt2 dX2 

dE 

dX 

gives 
p(d2ujdt2) = c^uJdX2) = 0 

where c^ is defined as 

co/cox> 

(5) 

(6) 

and 

d2U2a> 

dt2 
Cloi 

62U2o, 

' dX2 

X-

i + - ) 

fixe* 

2Foe2 

(COC/CO)(GVVD) duw d2Uo> 
(7) 

where 

(coc/co+w/wx>)2(coc/2co+2co/coi)) dX dX2 

r #2 2co/coz> "| 

L ec (coc/2co+2co/w2>)J 

(du0}/dX)(d2u0>/dX2) is the driving term for the second 
harmonic, and its coefficient is an effective third-order 
elastic constant which we define as cine-L. The super
script e.l. denotes electron-lattice to distinguish it from 
the usual lattice anelastic constant cm. 

The solution to these equations with the boundary 
condition that u=A sin(—ut) at X = 0 is 

U=U(a+U2a3, 

u—A sin.(kiX—oot)-
A^/cm*-1-

8 ( - ) 

s in [ ( a ) X/Fo) (F 2 w -F t t ) /F 0 ] 
X cos(faX-2wt). 

( F 2 M - F M ) / T 0 

This approximation is valid for 

^^ 1 /c i I I
e - 1 - \s in[(coX/Fo)(F 2 M -Fw ) /F 0 ] 

8 \ c I (Vto-VJ/Vt 

(8) 

« 1 . 

In terms of the acoustic intensities Pu=^cwVo,(kuuu)
2 

and P2(o=Jc2WF2W(^2ai«<2u)2 and here taking c=c„=C2M, 
Vu= Via— V0 and k^=2ka, the final result is 

Pin — -
i V / c i n - ' A 2 s in2C(a.X/F0)(F2 f f l-F.) /F0] 

8F0c\ [ ( F 2 „ - F M ) / F 0 ] 2 
(9) 

The harmonic consists of a wave which is locked to 
the fundamental which therefore exists only in presence 
of the driving term and has frequency 2co and propaga
tion vector 2h\. There is also a free wave of frequency 

2cu and propagation vector ki which is a solution to the 
homogeneous equation. The sum of the two solutions, 
obeying the boundary condition, results in the form ob
tained in Eq. (8). At crossover, the dispersion is given by 

(cm«\m r K2 i n 
= ( — ) =Vo 1 + , 

\ o / L 2 l+(o)co)n/m2o)2)J 

(10) 

with F 0 = (c/p)1/2 and K2=e2/ce is the electromechanical 
coupling constant. This dispersion is the result of the 
difference in the screening, at different acoustic fre
quencies, of the longitudinal electric field which accom
panies the sound wave in a piezoelectric crystal.7,8 

Equation (9) exhibits the coherence effects similar to 
optical harmonics,2 and reduces to the result obtained 
by Melngailis et al.10 for the usual anelastic case in which 
there is negligible dispersion. 

III. EXPERIMENT 

The experimental arrangement was similar to that of 
Hutson, McFee, and White. Data were taken at cross
over for various light levels at the fundamental shear 
wave frequencies of 11.5 and 30 Mc on a 7-mm crystal 
and at 30 Mc on a 3-mm crystal. The crossover voltage 
was determined at low input power levels for each re
sistivity. The fundamental and second harmonic were 
then measured as a function of input power at the low 
input crossover voltage. 

The harmonics could be reduced by greater than 
30 dB by removing the illumination and returning the 
crystal to its insulating state. This appears to establish 
the presence of the harmonics as due to the electron-
lattice interaction and not to other effects which should 
not be appreciably affected by illumination. Further
more, working at crossover eliminates the possibility 
that a small spurious signal could be amplified. 

The low input level was chosen for determining the 
crossover point because it was felt that in the absence 
of nonlinearities the crossover should be independent of 
the power level. In the dark or insulating condition, the 
fundamental output power was linearly proportional to 
the input up to the highest power used, whereas in the 
illuminated state the output deviated from its dark 
value at high input levels. The depletion of the funda
mental in the conducting state appears to be a further 
check on the origin of the harmonics. 

The major experimental problem was the measure
ment of absolute acoustic intensities which is necessary 
in order to determine the effective anelastic constants. 
The absolute intensity can be determined from insertion 
loss measurements if the input and output terminals of 
the system are electrically and acoustically symmetric. 
Identical transducers were used for transmitter and 
receiver, and were inductively tuned and then shunted 
by a 100-12 resistor which made the input and output 

10 J. Melngailis, A. A. Maradudin, and A. Seeger, Phys. Rev. 
131, 1972 (1963). 
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TABLE II. The ratio of fundamental to second harmonic power 
for the maximum fundamental intensity is given in dB. 

20 40 60 80 100 120 140 
RESISTIVITY (OHM-CM) 

160 180 200 
X103 

tIe.lA 2 s i n 2 [ ( c o X / F o ) ( 7 , . - Va)/VoT 

Po [_8F(A c J C(F2a,-Fw)/Fo]2 J 
at 30 Mc for Pw=0.18 W/cm2 as a function of sample resistivity 
on 7-mm crystal. 

impedances effectively 100 0. The resistors considerably 
increased the insertion losses, but made the transmitting 
and receiving efficiency of the transducers equal and also 
matched the transmitting transducer to the rf pulse 
generator. The ratio of the input to output power (in
sertion loss) was determined by inserting an attenuator 
with 100-12 characteristic impedance in place of the 
sample while maintaining the same input voltage and 
output signal level, and the input power was determined 
by measuring the voltage across the 100-12 terminating 
resistor. The acoustic intensity was then found by as
suming all of the electrical power was absorbed in the 
terminating resistors, and therefore the acoustic in
tensity is the input power diminished by half of the 
insertion loss. Allowing for some electrical and acoustic 
asymmetry (which can be estimated by flipping the 
sample) the acoustic intensities are believed reliable to 
within a factor of 3. 

In order to check for harmonics which may exist in 
the electrical input, a band pass filter, centered at the 
fundamental, was sometimes used. However, checking 

TABLE I. Effective third-order elastic constants.* 

f»e* (C0C/C0) (<d/(tiD) 
Cllf'h = 

2VQ€* (COC /W+«/WD)2(«C/2CO+2W/COZ>) 
Resistivity cm6,1, 

(fi-cm) (dyne/cm2) 

30 000 
60 000 
90 000 

180 000 
270 000 

10 000 
30 000 
90 000 

200 000 
270 000 

11.5 Mc/sec 

30 Mc/sec 

4.8 X1012 

1.7X1013 

3.4X1013 

1.0X1014 

1.8X1014 

8.3 X1012 

4.9X1013 

1.6X1014 

3.2 X1014 

2.4X1014 

* The values of the constants used in the calculations are <ac =1.25 X1012 

tr(n~l cm -1), COD =6.0 XlOOsec-1, 6 =0.8 cgs, e =6.5 X10*cgs, and c =1.5 X1011 

dyne/cm2 and /* =200 cm2/V sec. 

Resistivity 
(K O-cm) 

7 mm— 

10 
30 
90 

7 mm— 

10 
30 
45 
90 

270 

3 mm— 

90 
270 

7 mm—: 

30 
60 
90 

180 
270 

30 Mc/sec 

30 Mc/sec 

Experimental 
(dB) 

Theoretical 
(dB) 

; Maximum fundamental intensity 
is 0.85 W/cm2 

18 
9 
4 

IS 
a 
0 

: Maximum fundamental intensity 
is 0.18 W/cm2 

21 
14 
15 

7 
11 

22 
a 

15 
6 
5 

30 Mc/sec Maximum fundamental intensity 
is 0.13 W/cm2 

18 
14 

8 
2 

.1.5 Mc/sec Maximum fundamental intensity 
is 0.25 W/cm2 

25 
17 
14 
19 
21 

28 
19 
14 

6 
1 

a Theory predicts the second harmonic should be zero. 

the dark value of the harmonic (where the interaction 
was turned off) proved the filter to be unnecessary. It 
was also pointed out to the author by White that a 
sine-wave incident on a nonlinear medium will in general 
reflect a harmonic, thereby changing the boundary con
dition used in deriving Eq. (8). However, calculation of 
the reflected harmonic at the interface between quartz 
and cadmium sulfide leads to the belief that this effect 
should be negligible.11 This calculation does, however, 
neglect any effects due to the acoustic bonds. 

Another cause of experimental error could be inhomo-

-10 

P200 I 

(dB) 
-20| 

A 

60 80 100 120 
RESISTIVITY (OHM-CM) 

160 160 
X103 

FIG. 2. 
P2o, I" 1 Aiiie-1A2sin2[(coX/Fo)(F2w-Fw)/Fo]-

L8F0A c P. |_8F<A c J [_(V^-V„)/VoJ J 
at 11.5 Mc for Pw=0.25 W/cm2 as a function of sample resistivity 
on 7-mm crystal. 

11N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 
(1962). 



P I E Z O E L E C T R I C U L T R A S O N I C H A R M O N I C G E N E R A T I O N I N C d S A 7 7 5 

geneities in the crystal such as a nonuniform distribution 
of trapping centers and in the illumination which might 
smear out coherence effects. Furthermore at low-carrier 
concentrations trapping effects may become important,4 

thereby partly accounting for the discrepancy between 
theory and experiment at high resistivities. 

IV. RESULTS 

The effective anelastic constants cmeA' are given as a 
function of frequency and resistivity in Table I. In 
Table II, the experimental results are compared with 
the theory as given by Eqs. (9) and (10), and some of the 
results are plotted against the theoretical curve in 
Figs. 1 and 2. It is seen from Table I and Figs. 1 and 2 
that the general fit is good except where coherence 
effects should produce a null in the harmonic output and 
at high resistivities. The causes of these discrepancies 
are not entirely clear, although possible reasons have 
been mentioned at the end of the preceding section. 

The plot of fundamental and harmonic power against 
input power for the case of maximum harmonic produc
tion is given in Fig. 3. It is seen from this figure that 
both the fundamental and harmonic deviate at high 
power from their low power slopes. The deviation 
becomes significant for inputs greater than 25 dB 
(-0.12 W/cm2). The criteria for the validity of the 
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FIG. 3. Fundamental and harmonic intensities as a function of 
input intensity at 30 Mc and 90-k 12-cm on a 7-mm crystal. 
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FIG. 4. Graph showing P2« proportional to Pw
2. 

theory as given by Eq. (8) was 

Akx cz sin[(coX/F0)(F2W- 7„) /7 0] 
« 1 . 

8 c ( 7 , . - 7 . ) / 7 o 

At 0.12 W/cm2 this quantity is approximately 0.2, so 
that for lower input levels or cases of less harmonic 
production, the theory should be valid. 

In Fig. 4, it is shown that the harmonic power is 
proportional to the square of the fundamental power 
even at the highest power level. 

V. CONCLUSIONS 

This work has given an absolute measurement of the 
electron-lattice nonlinearity as originally predicted by 
Hutson.3 A theory, in terms of equivalent third-order 
elastic constants, has been developed which is in reason
able agreement with the experimental data except for 
the above mentioned discrepancies. It is felt that the 
unambiguous appearance of coherence effects and agree
ment at high resistivities would require work on select 
samples of various lengths under extremely homogene
ous lighting conditions, which may be beyond our 
present technology. 
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